Reduction of the spherical aberration effect in high-numerical-aperture optical scanning instruments.

نویسندگان

  • Isabel Escobar
  • Genaro Saavedra
  • Manuel Martínez-Corral
  • Jesús Lancis
چکیده

In modern high-numerical-aperture (NA) optical scanning instruments, such as scanning microscopes, optical data storage systems, or laser trapping technology, the beam emerging from the high-NA objective focuses deeply through an interface between two media of different refractive index. Such a refractive index mismatch introduces an important amount of spherical aberration, which increases dynamically when scanning at increasing depths. This effect strongly degrades the instrument performance. Although in the past few years many different techniques have been reported to reduce the spherical aberration effect, no optimum solution has been found. Here we concentrate on a technique whose main feature is its simplicity. We refer to the use of purely absorbing beam-shaping elements, which with a minimum modification of optical architecture will allow a significant reduction of the spherical aberration effect. Specifically, we will show that an adequately designed reversed-Gaussian aperture permits the production of a focal spot whose form changes very slowly with the spherical aberration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compact description of substrate-related aberrations in high numerical-aperture optical disk readout.

Optical disks are read out by focusing a beam of high numerical aperture (NA) through the substrate. Deviations of the thickness from the nominal value result in spherical aberration; tilting the substrate results in coma. Exact analytical expressions for the rms aberration per micrometer thickness mismatch (for spherical aberration) and per degree tilt (for coma) are derived. The paraxial esti...

متن کامل

Finite conjugate spherical aberration compensation in high numerical-aperture optical disc readout.

Spherical aberration arising from deviations of the thickness of an optical disc substrate from a nominal value can be compensated to a great extent by illuminating the scanning objective lens with a slightly convergent or divergent beam. The optimum conjugate change and the amount and type of residual aberration are calculated analytically for an objective lens that satisfies Abbe's sine condi...

متن کامل

Numerical Aperture Limits on Efficient Ball Lens Coupling of Laser Diodes to Single-Mode Fibers With Defocus To Balance Spherical Aberration

The potential capabilities and limitations of single ball lenses for coupling laser diode radiation to single-mode optical bers have been analyzed; parameters important to optical ber communications were specically considered. These parameters included coupling eciency, eective numerical apertures , lens radius, lens refractive index, wavelength, magnication in imaging the laser diode on the be...

متن کامل

Aberration-free optical refocusing in high numerical aperture microscopy.

We describe a method of optical refocusing for high numerical aperture (NA) systems that is particularly relevant for confocal and multiphoton microscopy. This method avoids the spherical aberration that is common to other optical refocusing systems. We show that aberration-free images can be obtained over an axial scan range of 70 mum for a 1.4 NA objective lens. As refocusing is implemented r...

متن کامل

An overview of scanning near-field optical microscopy in characterization of nano-materials

Scanning Near-Field Optical Microscopy (SNOM) is a member of scanning probe microscopes (SPMs) family which enables nanostructure investigation of the surfaces on a wide range of materials. In fact, SNOM combines the SPM technology to the optical microscopy and in this way provide a powerful tool to study nano-structures with very high spatial resolution. In this paper, a qualified overview of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the Optical Society of America. A, Optics, image science, and vision

دوره 23 12  شماره 

صفحات  -

تاریخ انتشار 2006